SELAMAT DATANG DIBLOG {REMO FORTUNA}

Jumat, 29 Mei 2015

pengertian tentang MYSQL

. Pengertian tentang MYSQL



MySQL adalah sebuah perangkat lunak sistem manajemen basis data SQL (bahasa Inggris: database management system) atau DBMS yang multithread, multi-user, dengan sekitar 6 juta instalasi di seluruh dunia. MySQL AB membuat MySQL tersedia sebagai perangkat lunak gratis dibawah lisensi GNU General Public License (GPL), tetapi mereka juga menjual dibawah lisensi komersial untuk kasus-kasus dimana penggunaannya tidak cocok dengan penggunaan GPL.

Sumber : http://id.wikipedia.org/wiki/MySQL




A7. penanaman sistem domain pada jaringan
Sistem Penamaan Domain; SNR (bahasa Inggris: (Domain Name System; DNS) adalah sebuah sistem yang menyimpan informasi tentang nama host ataupun nama domain dalam bentuk basis data tersebar (distributed database) di dalam jaringan komputer, misalkan: Internet. DNS menyediakan alamat IP untuk setiap nama host dan mendata setiap server transmisi surat (mail exchange server) yang menerima surel (email) untuk setiap domain. Menurut browser Google Chrome, DNS adalah layanan jaringan yang menerjemahkan nama situs web menjadi alamat internet.

DNS menyediakan pelayanan yang cukup penting untuk Internet, ketika perangkat keras komputer dan jaringan bekerja dengan alamat IP untuk mengerjakan tugas seperti pengalamatan dan penjaluran (routing), manusia pada umumnya lebih memilih untuk menggunakan nama host dan nama domain, contohnya adalah penunjukan sumber universal (URL) dan alamat surel. Analogi yang umum digunakan untuk menjelaskan fungsinya adalah DNS bisa dianggap seperti buku telepon internet dimana saat pengguna mengetikkan www.indosat.net.id di peramban web maka pengguna akan diarahkan ke alamat IP 124.81.92.144 (IPv4) dan 2001:e00:d:10:3:140::83 (IPv6).
Sejarah singkat DNS
Penggunaan nama sebagai pengabstraksi alamat mesin di sebuah jaringan komputer yang lebih dikenal oleh manusia mengalahkan TCP/IP, dan kembali ke zaman ARPAnet. Dahulu, seluruh komputer di jaringan komputer menggunakan file HOSTS.TXT dari SRI (sekarang SIR International), yang memetakan sebuah alamat ke sebuah nama (secara teknis, file ini masih ada - sebagian besar sistem operasi modern menggunakannya dengan baik secara baku maupun melalui cara konfigurasi, dapat melihat Hosts file untuk menyamakan sebuah nama host menjadi sebuah alamat IP sebelum melakukan pencarian via DNS). Namun, sistem tersebut di atas mewarisi beberapa keterbatasan yang mencolok dari sisi prasyarat, setiap saat sebuah alamat komputer berubah, setiap sistem yang hendak berhubungan dengan komputer tersebut harus melakukan update terhadap file Hosts.
Dengan berkembangnya jaringan komputer, membutuhkan sistem yang bisa dikembangkan: sebuah sistem yang bisa mengganti alamat host hanya di satu tempat, host lain akan mempelajari perubaha tersebut secara dinamis. Inilah DNS.
Paul Mockapetris menemukan DNS pada tahun 1983; spesifikasi asli muncul di RFC 882 dan 883. Tahun 1987, penerbitan RFC 1034 dan RFC 1035 membuat update terhadap spesifikasi DNS. Hal ini membuat RFC 882 dan RFC 883 tidak berlaku lagi. Beberapa RFC terkini telah memproposikan beberapa tambahan dari protokol inti DNS.
Sebuah contoh dari teori rekursif DNS
Sebuah contoh mungkin dapat memperjelas proses ini. Andaikan ada aplikasi yang memerlukan pencarian alamat IP dari www.wikipedia.org. Aplikasi tersebut bertanya ke DNS recursor lokal.
Sebelum dimulai, recursor harus mengetahui dimana dapat menemukan root nameserver; administrator dari recursive DNS server secara manual mengatur (dan melakukan update secara berkala) sebuah file dengan nama root hints zone (panduan akar DNS) yang menyatakan alamat-alamt IP dari para server tersebut.
Proses dimulai oleh recursor yang bertanya kepada para root server tersebut - misalkan: server dengan alamat IP "198.41.0.4" - pertanyaan "apakah alamat IP dari www.wikipedia.org?"
Root server menjawab dengan sebuah delegasi, arti kasarnya: "Saya tidak tahu alamat IP dari www.wikipedia.org, tapi saya "tahu" bahwa server DNS di 204.74.112.1 memiliki informasi tentang domain org."
Recursor DNS lokal kemudian bertanya kepada server DNS (yaitu: 204.74.112.1) pertanyaan yang sama seperti yang diberikan kepada root server. "apa alamat IP dari www.wikipedia.org?". (umumnya) akan didapatkan jawaban yang sejenis, "saya tidak tahu alamat dari www.wikipedia.org, tapi saya "tahu" bahwa server 207.142.131.234 memiliki informasi dari domain wikipedia.org."
Akhirnya, pertanyaan beralih kepada server DNS ketiga (207.142.131.234), yang menjawab dengan alamat IP yang dibutuhkan.
Proses ini menggunakan pencarian rekursif (recursion / recursive searching).

Sumber : http://id.wikipedia.org/wiki/Sistem_Penamaan_Domain

A6. Pengertiam Tentang PHP: Hypertext Preprocessor
|
PHP: Hypertext Preprocessor adalah bahasa skrip yang dapat ditanamkan atau disisipkan ke dalam HTML. PHP banyak dipakai untuk memrogram situs web dinamis. PHP dapat digunakan untuk membangun sebuah CMS.

Sejarah PHP
Pada awalnya PHP merupakan kependekan dari Personal Home Page (Situs personal). PHP pertama kali dibuat oleh Rasmus Lerdorf pada tahun 1995. Pada waktu itu PHP masih bernama Form Interpreted (FI), yang wujudnya berupa sekumpulan skrip yang digunakan untuk mengolah data formulir dari web. Selanjutnya Rasmus merilis kode sumber tersebut untuk umum dan menamakannya PHP/FI. Dengan perilisan kode sumber ini menjadi sumber terbuka, maka banyak pemrogram yang tertarik untuk ikut mengembangkan PHP.
Pada November 1997, dirilis PHP/FI 2.0. Pada rilis ini, interpreter PHP sudah diimplementasikan dalam program C. Dalam rilis ini disertakan juga modul-modul ekstensi yang meningkatkan kemampuan PHP/FI secara signifikan.
Pada tahun 1997, sebuah perusahaan bernama Zend menulis ulang interpreter PHP menjadi lebih bersih, lebih baik, dan lebih cepat. Kemudian pada Juni 1998, perusahaan tersebut merilis interpreter baru untuk PHP dan meresmikan rilis tersebut sebagai PHP 3.0 dan singkatan PHP diubah menjadi akronim berulang PHP: Hypertext Preprocessing.
Pada pertengahan tahun 1999, Zend merilis interpreter PHP baru dan rilis tersebut dikenal dengan PHP 4.0. PHP 4.0 adalah versi PHP yang paling banyak dipakai pada awal abad ke-21. Versi ini banyak dipakai disebabkan kemampuannya untuk membangun aplikasi web kompleks tetapi tetap memiliki kecepatan dan stabilitas yang tinggi.
PadaJuni 2004, Zend merilis PHP 5.0. Dalam versi ini, inti dari interpreter PHP mengalami perubahan besar. Versi ini juga memasukkan model pemrogramsan beroreantasi objek ke dalam PHP untuk menjawab perkembangan bahasa pemrograman ke arah paradigma berorientasi objek.
Versi terbaru dari bahasa pemograman PHP adalah versi 5.6.4 yang resmi dirilis pada tanggal 18 Desember 2014.


phpMyAdmin adalah perangkat lunak bebas yang ditulis dalam bahasa pemrograman PHP yang digunakan untuk menangani administrasi MySQL melalui Jejaring Jagat Jembar (World Wide Web). phpMyAdmin mendukung berbagai operasi MySQL, diantaranya (mengelola basis data, tabel-tabel, bidang (fields), relasi (relations), indeks, pengguna (users), perijinan (permissions), dan lain-lain).

Sumber : http://id.wikipedia.org/wiki/PhpMyAdmin


A7. Pengertian Network Load Balancing
Load Balancing 2 ISP dengan menggunakan Ubuntu Server 9.04 bisa dikatakan sebagai teknik menyeimbangkan beban bandwidth ke dua atau lebih jaringan internet dari ISP yang sama atau berbeda dengan menggunakan dua jalur transfer data atau lebih, dan digunakan untuk sebuah jaringan LAN. Artinya, dua jalur internet terhubung pada sebuah gateway, pada gateway tersebut akan dilakukan penyeimbangan (balancing) transfer data. Di mana kepadatan traffic pada jalur menjadi perhitungan pertama dalam pembagian bandwith. Jadi, misal ada 2 koneksi yang satu dengan bandwidth 2 Mbps dan yang satunya lagi 512 kbps, bukan berarti kecepatan kita menjadi 2.512 Mbps ( 2 Mbps + 512 kbps ≠2.512 Mbps ), fungsi load balance hanya untuk mengurangi kepadatan traffic, jika terdapat kepadatan pada jalur pertama, maka request selanjutnya akan dialihkan ke jalur yang satunya yang trafficnya lebih longgar.
Apa itu load Balance?
Metode penyeimbangan koneksi dengan menggunakan lebih dari satu koneksi, atau membuat lebih dari satu jalur untuk transfer data agar transportasi data lebih efisien.
Kenapa menggunakan Load Balance?
Untuk meminimalisir kemacetan traffic saat transfer data, memastikan client mendapatkan data dengan cepat dan tepat dengan cara membuat dua jalur transportasi data yang terhubung dengan client dan server.
Kapan digunakan :
Saat client memerlukan koneksi data yang bersifat non stop dan banyak client yang memerlukan pengambilan data dari server secara cepat.
Siapa yang menggunakan :
Yang menggunakan adalah suatu instansi yang memiliki client dalam jumlah banyak dengan kebutuhan transfer data yang non stop dan efisien.
Dimana biasanya digunakan :
Di instansi yang memiliki banyak karyawan yang karyawan tersebut harus selalu berhubungan dengan data baik di server atau di internet.
Bagaimana cara kerja load balance :
Cara kerja dari load balancing adalah sebagai berikut:
Misal ada 2 koneksi yang sudah kita terapkan load balance, yaitu koneksi A dan B. Banyak user yang terhubung dengan koneksi tersebut, saat ada user yang merequest data, maka balancer akan memilihkan jalur yang trafficnya lebih longgar dan memiliki respon yang lebih cepat antara koneksi A dan B.


Beban jaringan balancing (sering disebut sebagai routing yang dual-WAN atau multihoming) adalah kemampuan untuk menyeimbangkan lalu lintas di dua WAN link tanpa menggunakan routing protokol yang kompleks seperti BGP.Kemampuan ini menyeimbangkan sesi jaringan seperti Web, email, dll selama beberapa koneksi untuk menyebar jumlah bandwidth yang digunakan oleh masing-masing pengguna LAN, sehingga meningkatkan jumlah total bandwidth yang tersedia. Sebagai contoh, pengguna memiliki koneksi WAN tunggal untuk operasi Internet di 1.5Mbit / s. Mereka ingin menambahkan broadband kedua (kabel, DSL, wireless, dll) koneksi beroperasi pada 2.5Mbit / s. Ini akan memberikan mereka dengan total 4Mbit / s bandwidth ketika menyeimbangkan sesi.
Sesi balancing tidak hanya itu, saldo sesi di setiap WAN Link. Ketika Web browser terhubung ke Internet, mereka biasanya membuka beberapa sesi, satu untuk teks, lain untuk gambar, satu lagi untuk beberapa gambar lainnya, dll Masing-masing sesi ini dapat seimbang di koneksi yang tersedia. Aplikasi FTP hanya menggunakan satu sesi sehingga tidak seimbang; namun jika koneksi FTP sekunder dibuat, maka dapat seimbang sehingga secara keseluruhan, lalu lintas merata di berbagai koneksi dan dengan demikian memberikan peningkatan secara keseluruhan dalam throughput.
Selain itu, beban jaringan balancing umumnya digunakan untuk memberikan redundansi jaringan sehingga dalam hal link pemadaman WAN, akses ke sumber daya jaringan masih tersedia melalui link sekunder (s). Redundansi merupakan persyaratan utama untuk rencana kesinambungan bisnis dan umumnya digunakan dalam hubungannya dengan aplikasi kritis seperti VPN dan VoIP.
Akhirnya, sebagian besar sistem jaringan load balancing juga menggabungkan kemampuan untuk menyeimbangkan kedua outbound dan lalu lintas inbound. Inbound load balancing umumnya dilakukan melalui DNS dinamis yang baik dapat dibangun ke dalam sistem, atau disediakan oleh layanan eksternal atau sistem. Memiliki layanan DNS dinamis dalam sistem umumnya dianggap lebih baik dari penghematan biaya dan titik kontrol keseluruhan pandang.

sumber : http://id.wikipedia.org/wiki/Load_Balance

A7. perbedaan Router dengan routing
Router adalah merupakan device jaringan yang berfungsi untuk menghubungkan satu jaringan dengan jaringan lain. Baik itu secara Local networking ataupun Wide Networking ,dan digunakan untuk routing.
Sedangkan routing adalah sebuah proses menterjemahkan 2 atau lebih network yang berbeda.

Router dibagi menjadi dua yaitu : router pc dan router fisik

1. router pc adalah sebuah pc yang dialihkan menjadi router.
syarat minimal nya mempunyai 2 NIC.
2. router fisik adalah sebuah hardware yang memang dikhususkan sebagai router. contohnya mikrotik, cisco, ubiquiti, dll.

Dan Untuk mengkonfigurasi router diperlukan suatu jaringan dimana jaringan tersebut secara IP haruslah terdiri dari beberapa network. Setting IP pada router dapat dilakukan dengan dua cara yaitu :

1. Real
1 NIC ( Network Interface Controller ) untuk satu IP, Pada komputer router
terdapat beberapa NIC.
2. Alias
1 NIC ( Network Interface Controller ) untuk beberapa IP, satu NIC memiliki
beberapa IP address.
Sedangkan routing dibagi menjadi 3 yaitu :

1. default routingadalah hanya memasukan ip untuk router sehingga hanya hanya menggunakan konfigurasi default router tersebut.
2. static routing adalah sebuah router yang memiliki tabel routing statis yang disetting secara manual.
3. dinamyc routing adalah proses routing yang dilakukan oleh router itu sendiri.

A8. pengertian tentang open source
Sumber terbuka (Inggris: open source) adalah sistem pengembangan yang tidak dikoordinasi oleh suatu individu / lembaga pusat, tetapi oleh para pelaku yang bekerja sama dengan memanfaatkan kode sumber (source-code) yang tersebar dan tersedia bebas (biasanya menggunakan fasilitas komunikasi internet). Pola pengembangan ini mengambil model ala bazaar, sehingga pola Open Source ini memiliki ciri bagi komunitasnya yaitu adanya dorongan yang bersumber dari budaya memberi, yang artinya ketika suatu komunitas menggunakan sebuah program Open Source dan telah menerima sebuah manfaat kemudian akan termotivasi untuk menimbulkan sebuah pertanyaan apa yang bisa pengguna berikan balik kepada orang banyak.



Pola Open Source lahir karena kebebasan berkarya, tanpa intervensi berpikir dan mengungkapkan apa yang diinginkan dengan menggunakan pengetahuan dan produk yang cocok. Kebebasan menjadi pertimbangan utama ketika dilepas ke publik. Komunitas yang lain mendapat kebebasan untuk belajar, mengutak-ngatik, merevisi ulang, membenarkan ataupun bahkan menyalahkan, tetapi kebebasan ini juga datang bersama dengan tanggung jawab, bukan bebas tanpa tanggung jawab.
Konsep dan definisi
Pada intinya konsep sumber terbuka adalah membuka "kode sumber" dari sebuah perangkat lunak. Konsep ini terasa aneh pada awalnya dikarenakan kode sumber merupakan kunci dari sebuah perangkat lunak. Dengan diketahui logika yang ada di kode sumber, maka orang lain semestinya dapat membuat perangkat lunak yang sama fungsinya. Sumber terbuka hanya sebatas itu. Artinya, dia tidak harus gratis. Definisi sumber terbuka yang asli adalah seperti tertuang dalam OSD (Open Source Definition)/Definisi sumber terbuka.
Pergerakan sumber terbuka dan perangkat lunak bebas
Pergerakan perangkat lunak bebas dan sumber terbuka saat ini membagi pergerakannya dengan pandangan dan tujuan yang berbeda. Sumber terbuka adalah pengembangan secara metodelogi, perangkat lunak tidak bebas adalah solusi suboptimal. Bagi pergerakan perangkat lunak bebas, perangkat lunak tidak bebas adalah masalah sosial dan perangkat lunak bebas adalah solusi.

Sumber : http://id.wikipedia.org/wiki/Sumber_terbuka

A9. Pengertian HAserver
dalam ilmu komputer dan jaringan komputer adalah sekumpulan komputer (umumnya server jaringan) independen yang beroperasi serta bekerja secara erat dan terlihat oleh klien jaringan seolah-olah komputer-komputer tersebut adalah satu buah unit komputer. Proses menghubungkan beberapa komputer agar dapat bekerja seperti itu dinamakan dengan Clustering. Komponen cluster biasanya saling terhubung dengan cepat melalui sebuah interkoneksi yang sangat cepat, atau bisa juga melalui jaringan lokal (LAN).
Karena menggunakan lebih dari satu buah server, maka manajemen dan perawatan sebuah cluster jauh lebih rumit dibandingkan dengan manajemen server mainframe tunggal yang memiliki skalabilitas tinggi (semacam IBM AS/400), meski lebih murah.
Kategori kluster komputer
Kluster komputer terbagi ke dalam beberapa kategori, sebagai berikut:
Kluster untuk ketersediaan yang tinggi (High-availability clusters)
Kluster untuk pemerataan beban komputasi (Load-balancing clusters)
Kluster hanya untuk komputasi (Compute clusters)
Grid computing



High-availability cluster
High-availability cluster, yang juga sering disebut sebagai Failover Cluster pada umumnya diimplementasikan untuk tujuan meningkatkan ketersediaan layanan yang disediakan oleh kluster tersebut. Elemen kluster akan bekerja dengan memiliki node-node redundan, yang kemudian digunakan untuk menyediakan layanan saat salah satu elemen kluster mengalami kegagalan. Ukuran yang paling umum dari kategori ini adalah dua node, yang merupakan syarat minimum untuk melakukan redundansi. Implementasi kluster jenis ini akan mencoba untuk menggunakan redundansi komponen kluster untuk menghilangkan kegagalan di satu titik (Single Point of Failure).
Ada beberapa implementasi komersial dari sistem kluster kategori ini, dalam beberapa sistem operasi. Meski demikian, proyek Linux-HA adalah salah satu paket yang paling umum digunakan untuk sistem operasi GNU/Linux.
Dalam keluarga sistem operasi Microsoft Windows NT, sebuah layanan yang disebut dengan Microsoft Cluster Service (MSCS) dapat digunakan untuk menyediakan kluster kategori ini. MSCS ini diperbarui lagi dan telah diintegrasikan dalam Windows 2000 Advanced Server dan Windows 2000 Datacenter Server, dengan nama Microsoft Clustering Service. Dalam Windows Server 2003, Microsoft Clustering Service ini ditingkatkan lagi kinerjanya.
Load balancing cluster
Kluster kategori ini beroperasi dengan mendistribusikan beban pekerjaan secara merata melalui beberapa node yang bekerja di belakang (back-end node). Umumnya kluster ini akan dikonfigurasikan sedmikian rupa dengan beberapa front-end load-balancing redundan. Karena setiap elemen dalam sebuah kluster load-balancing menawarkan layanan penuh, maka dapat dikatakan bahwa komponen kluster tersebut merupakan sebuah kluster aktif/kluster HA aktif, yang bisa menerima semua permintaan yang diajukan oleh client.
Compute Cluster
Seringnya, penggunaan utama kluster komputer adalah untuk tujuan komputasi, ketimbang penanganan operasi yang berorientasi I/O seperti layanan Web atau basis data. Sebagai contoh, sebuah kluster mungkin mendukung simulasi komputasional untuk perubahan cuaca atau tabrakan kendaraan. Perbedaan utama untuk kategori ini dengan kategori lainnya adalah seberapa eratkah penggabungan antar node-nya. Sebagai contoh, sebuah tugas komputasi mungkin membutuhkan komunikasi yang sering antar node--ini berarti bahwa kluster tersebut menggunakan sebuah jaringan terdedikasi yang sama, yang terletak di lokasi yang sangat berdekatan, dan mungkin juga merupakan node-node yang bersifat homogen. Desain kluster seperti ini, umumnya disebut juga sebagai Beowulf Cluster. Ada juga desain yang lain, yakni saat sebuah tugas komputasi hanya menggunakan satu atau beberapa node saja, dan membutuhkan komunikasi antar-node yang sangat sedikit atau tidak ada sama sekali. Desain kluster ini, sering disebut sebagai "Grid". Beberapa compute cluster yang dihubungkan secara erat yang didesain sedemikian rupa, umumnya disebut dengan "Supercomputing". Beberapa perangkat lunak Middleware seperti MPI atau Parallel Virtual Machine (PVM) mengizinkan program compute clustering agar dapat dijalankan di dalam kluster-kluster tersebut.
Grid computing
Grid pada umumnya adalah compute cluster, tapi difokuskan pada throughput seperti utilitas perhitungan ketimbang menjalankan pekerjaan-pekerjaan yang sangat erat yang biasanya dilakukan oleh Supercomputer. Seringnya, grid memasukkan sekumpulan komputer, yang bisa saja didistribusikan secara geografis, dan kadang diurus oleh organisasi yang tidak saling berkaitan.
Grid computing dioptimalkan untuk beban pekerjaan yang mencakup banyak pekerjaan independen atau paket-paket pekerjaan, yang tidak harus berbagi data yang sama antar pekerjaan selama proses komputasi dilakukan. Grid bertindak untuk mengatur alokasi pekerjaan kepada komputer-komputer yang akan melakukan tugas tersebut secara independen. Sumber daya, seperti halnya media penyimpanan, mungkin bisa saja digunakan bersama-sama dengan komputer lainnya, tapi hasil sementara dari sebuah tugas tertentu tidak akan memengaruhi pekerjaan lainnya yang sedang berlangsung dalam komputer lainnya.
Sebagai contoh grid yang sangat luas digunakan adalah proyek Folding@home, yang menganalisis data yang akan digunakan oleh para peneliti untuk menemukan obat untuk beberapa penyakit seperti Alzheimer dan juga kanker. Proyek lainnya, adalah SETI@home, yang merupakan proyek grid terdistribusi yang paling besar hingga saat ini. Proyek SETI@home ini menggunakan paling tidak 3 juta komputer rumahan yang berada di dalam komputer rumahan untuk menganalisis data dari teleskop radio observatorium Arecibo (Arecibo Observatory radiotelescope), mencari bukti-bukti keberadaan makhluk luar angkasa. Dalam dua kasus tersebut, tidak ada komunikasi antar node atau media penyimpanan yang digunakan bersama-sama.
Implementasi
Daftar semi-tahunan organisasi TOP500, yang mencantumkan 500 komputer tercepat di dunia umumnya mencakup banyak kluster. TOP500 adalah sebuah kolaborasi antara Universitas Mannheim, Universitas Tennessee, dan National Energy Research Scientific Computing Center di Lawrence Berkeley National Laboratory. Hingga 18 Juni 2008, superkomputer tercepat yang tercatat di dalam TOP500 adalah sistem Roadrunner yang dimiliki oleh Department of Energy Amerika Serikat, yang kinerjanya mencapai 1026 TeraFlops (Triliun Floating Point Operation per Second) dalam benchmark High-Performance LINPACK.
Kluster dan Grid di Indonesia
Beberapa kluster yang ada di Indonesia adalah:
LIPI Public Cluster (http://www.cluster.lipi.go.id/)
NL Grid UGM (http://grid.te.ugm.ac.id/docs/)
Grid UI (http://grid.ui.ac.id/)
Sumber : id.wikipedia.org/wiki/Kluster_komputer

A10. pengertian dari Alamat IPv4
Alamat IP versi 4 (sering disebut dengan Alamat IPv4) adalah sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 4. Panjang totalnya adalah 32-bit, dan secara teoritis dapat mengalamati hingga 4 miliar host komputer atau lebih tepatnya 4.294.967.296 host di seluruh dunia, jumlah host tersebut didapatkan dari 256 (didapatkan dari 8 bit) dipangkat 4(karena terdapat 4 oktet) sehingga nilai maksimal dari alamt IP versi 4 tersebut adalah 255.255.255.255 dimana nilai dihitung dari nol sehingga nilai nilai host yang dapat ditampung adalah 256x256x256x256=4.294.967.296 host, bila host yang ada di seluruh dunia melebihi kuota tersebut maka dibuatlah IP versi 6 atau IPv6. Contoh alamat IP versi 4 adalah 192.168.0.3.


Representasi alamat
Alamat IP versi 4 umumnya diekspresikan dalam notasi desimal bertitik (dotted-decimal notation), yang dibagi ke dalam empat buah oktet berukuran 8-bit. Dalam beberapa buku referensi, format bentuknya adalah w.x.y.z. Karena setiap oktet berukuran 8-bit, maka nilainya berkisar antara 0 hingga 255 (meskipun begitu, terdapat beberapa pengecualian nilai).
Alamat IP yang dimiliki oleh sebuah host dapat dibagi dengan menggunakan subnet mask jaringan ke dalam dua buah bagian, yakni:
Network Identifier/NetID atau Network Address (alamat jaringan) yang digunakan khusus untuk mengidentifikasikan alamat jaringan di mana host berada.
Dalam banyak kasus, sebuah alamat network identifier adalah sama dengan segmen jaringan fisik dengan batasan yang dibuat dan didefinisikan oleh router IP. Meskipun demikian, ada beberapa kasus di mana beberapa jaringan logis terdapat di dalam sebuah segmen jaringan fisik yang sama dengan menggunakan sebuah praktek yang disebut sebagai multinetting. Semua sistem di dalam sebuah jaringan fisik yang sama harus memiliki alamat network identifier yang sama. Network identifier juga harus bersifat unik dalam sebuah Internetwork. Jika semua node di dalam jaringan logis yang sama tidak dikonfigurasikan dengan menggunakan network identifier yang sama, maka terjadilah masalah yang disebut dengan routing error.
Alamat network identifier tidak boleh bernilai 0 atau 255.
Host Identifier/HostID atau Host address (alamat host) yang digunakan khusus untuk mengidentifikasikan alamat host (dapat berupa workstation, server atau sistem lainnya yang berbasis teknologi TCP/IP) di dalam jaringan. Nilai host identifier tidak boleh bernilai 0 atau 255 dan harus bersifat unik di dalam network identifier/segmen jaringan di mana ia berada.
Jenis-jenis alamat
Alamat IPv4 terbagi menjadi beberapa jenis, yakni sebagai berikut:
Alamat Unicast, merupakan alamat IPv4 yang ditentukan untuk sebuah antarmuka jaringan yang dihubungkan ke sebuah Internetwork IP. Alamat unicast digunakan dalam komunikasi point-to-point atau one-to-one.
Alamat Broadcast, merupakan alamat IPv4 yang didesain agar diproses oleh setiap node IP dalam segmen jaringan yang sama. Alamat broadcast digunakan dalam komunikasi one-to-everyone.
Alamat Multicast, merupakan alamat IPv4 yang didesain agar diproses oleh satu atau beberapa node dalam segmen jaringan yang sama atau berbeda. Alamat multicast digunakan dalam komunikasi one-to-many.
Kelas-kelas alamat
Dalam RFC 791, alamat IP versi 4 dibagi ke dalam beberapa kelas, dilihat dari oktet pertamanya, seperti terlihat pada tabel. Sebenarnya yang menjadi pembeda kelas IP versi 4 adalah pola biner yang terdapat dalam oktet pertama (utamanya adalah bit-bit awal/high-order bit), tapi untuk lebih mudah mengingatnya, akan lebih cepat diingat dengan menggunakan representasi desimal.

Kelas A
Alamat-alamat kelas A diberikan untuk jaringan skala besar. Nomor urut bit tertinggi di dalam alamat IP kelas A selalu diset dengan nilai 0 (nol). Tujuh bit berikutnya—untuk melengkapi oktet pertama—akan membuat sebuah network identifier. 24 bit sisanya (atau tiga oktet terakhir) merepresentasikan host identifier. Ini mengizinkan kelas A memiliki hingga 126 jaringan, dan 16,777,214 host tiap jaringannya. Alamat dengan oktet awal 127 tidak diizinkan, karena digunakan untuk mekanisme Interprocess Communication (IPC) di dalam mesin yang bersangkutan.
Kelas B
Alamat-alamat kelas B dikhususkan untuk jaringan skala menengah hingga skala besar. Dua bit pertama di dalam oktet pertama alamat IP kelas B selalu diset ke bilangan biner 10. 14 bit berikutnya (untuk melengkapi dua oktet pertama), akan membuat sebuah network identifier. 16 bit sisanya (dua oktet terakhir) merepresentasikan host identifier. Kelas B dapat memiliki 16,384 network, dan 65,534 host untuk setiap network-nya.
Kelas C
Alamat IP kelas C digunakan untuk jaringan berskala kecil. Tiga bit pertama di dalam oktet pertama alamat kelas C selalu diset ke nilai biner 110. 21 bit selanjutnya (untuk melengkapi tiga oktet pertama) akan membentuk sebuah network identifier. 8 bit sisanya (sebagai oktet terakhir) akan merepresentasikan host identifier. Ini memungkinkan pembuatan total 2,097,152 buah network, dan 254 host untuk setiap network-nya.
Kelas D
Alamat IP kelas D disediakan hanya untuk alamat-alamat IP multicast, namun berbeda dengan tiga kelas di atas. Empat bit pertama di dalam IP kelas D selalu diset ke bilangan biner 1110. 28 bit sisanya digunakan sebagai alamat yang dapat digunakan untuk mengenali host. Untuk lebih jelas mengenal alamat ini, lihat pada bagian Alamat Multicast IPv4.
Kelas E
Alamat IP kelas E disediakan sebagai alamat yang bersifat "eksperimental" atau percobaan dan dicadangkan untuk digunakan pada masa depan. Empat bit pertama selalu diset kepada bilangan biner 1111. 28 bit sisanya digunakan sebagai alamat yang dapat digunakan untuk mengenali host.

Catatan: Penggunaan kelas alamat IP sekarang tidak relevan lagi, mengingat sekarang alamat IP sudah tidak menggunakan kelas alamat lagi. Pengemban otoritas Internet telah melihat dengan jelas bahwa alamat yang dibagi ke dalam kelas-kelas seperti di atas sudah tidak mencukupi kebutuhan yang ada saat ini, di saat penggunaan Internet yang semakin meluas. Alamat IPv6 yang baru sekarang tidak menggunakan kelas-kelas seperti alamat IPv4. Alamat yang dibuat tanpa memedulikan kelas disebut juga dengan classless address
Jenis-jenis alamat unicast
Jika ada sebuah intranet tidak yang terkoneksi ke Internet, semua alamat IP dalam ruangan kelas alamat unicast dapat digunakan. Jika koneksi dilakukan secara langsung (dengan menggunakan teknik routing) atau secara tidak langsung (dengan menggunakan proxy server), maka ada dua jenis alamat yang dapat digunakan di dalam Internet, yaitu public address (alamat publik) dan private address (alamat pribadi).
Alamat publik
alamat publik adalah alamat-alamat yang telah ditetapkan oleh InterNIC dan berisi beberapa buah network identifier yang telah dijamin unik (artinya, tidak ada dua host yang menggunakan alamat yang sama) jika intranet tersebut telah terhubung ke Internet.
Ketika beberapa alamat publik telah ditetapkan, maka beberapa rute dapat diprogram ke dalam sebuah router sehingga lalu lintas data yang menuju alamat publik tersebut dapat mencapai lokasinya. Di Internet, lalu lintas ke sebuah alamat publik tujuan dapat dicapai, selama masih terkoneksi dengan Internet.
Alamat ilegal
Intranet-intranet pribadi yang tidak memiliki kemauan untuk mengoneksikan intranetnya ke Internet dapat memilih alamat apapun yang mereka mau, meskipun menggunakan alamat publik yang telah ditetapkan oleh InterNIC. Jika sebuah organisasi selanjutnya memutuskan untuk menghubungkan intranetnya ke Internet, skema alamat yang digunakannya mungkin dapat mengandung alamat-alamat yang mungkin telah ditetapkan oleh InterNIC atau organisasi lainnya. Alamat-alamat tersebut dapat menjadi konflik antara satu dan lainnya, sehingga disebut juga dengan illegal address, yang tidak dapat dihubungi oleh host lainnya.
Alamat Privat
Setiap node IP membutuhkan sebuah alamat IP yang secara global unik terhadap Internetwork IP. Pada kasus Internet, setiap node di dalam sebuah jaringan yang terhubung ke Internet akan membutuhkan sebuah alamat yang unik secara global terhadap Internet. Karena perkembangan Internet yang sangat amat pesat, organisasi-organisasi yang menghubungkan intranet miliknya ke Internet membutuhkan sebuah alamat publik untuk setiap node di dalam intranet miliknya tersebut. Tentu saja, hal ini akan membutuhkan sebuah alamat publik yang unik secara global.
Ketika menganalisis kebutuhan pengalamatan yang dibutuhkan oleh sebuah organisasi, para desainer Internet memiliki pemikiran yaitu bagi kebanyakan organisasi, kebanyakan host di dalam intranet organisasi tersebut tidak harus terhubung secara langsung ke Internet. Host-host yang membutuhkan sekumpulan layanan Internet, seperti halnya akses terhadap web atau e-mail, biasanya mengakses layanan Internet tersebut melalui gateway yang berjalan di atas lapisan aplikasi seperti proxy server atau e-mail server. Hasilnya, kebanyakan organisasi hanya membutuhkan alamat publik dalam jumlah sedikit saja yang nantinya digunakan oleh node-node tersebut (hanya untuk proxy, router, firewall, atau translator alamat jaringan) yang terhubung secara langsung ke Internet.
Untuk host-host di dalam sebuah organisasi yang tidak membutuhkan akses langsung ke Internet, alamat-alamat IP yang bukan duplikat dari alamat publik yang telah ditetapkan mutlak dibutuhkan. Untuk mengatasi masalah pengalamatan ini, para desainer Internet mereservasikan sebagian ruangan alamat IP dan menyebut bagian tersebut sebagai ruangan alamat pribadi. Sebuah alamat IP yang berada di dalam ruangan alamat pribadi tidak akan digunakan sebagai sebuah alamat publik. Alamat IP yang berada di dalam ruangan alamat pribadi dikenal juga dengan alamat pribadi atau Private Address. Karena di antara ruangan alamat publik dan ruangan alamat pribadi tidak saling melakukan overlapping, maka alamat pribadi tidak akan menduplikasi alamat publik, dan tidak pula sebaliknya. Sebuah jaringan yang menggunakan alamat IP privat disebut juga dengan jaringan privat atau private network.
Ruangan alamat pribadi yang ditentukan di dalam RFC 1918 didefinisikan di dalam tiga blok alamat berikut:
10.0.0.0/8
172.16.0.0/12
192.168.0.0/16
Alamat Multicast
Alamat IP Multicast (Multicast IP Address) adalah alamat yang digunakan untuk menyampaikan satu paket kepada banyak penerima. Dalam sebuah intranet yang memiliki alamat multicast IPv4, sebuah paket yang ditujukan ke sebuah alamat multicast akan diteruskan oleh router ke subjaringan di mana terdapat host-host yang sedang berada dalam kondisi "listening" terhadap lalu lintas jaringan yang dikirimkan ke alamat multicast tersebut. Dengan cara ini, alamat multicast pun menjadi cara yang efisien untuk mengirimkan paket data dari satu sumber ke beberapa tujuan untuk beberapa jenis komunikasi. Alamat multicast didefinisikan dalam RFC 1112.
Alamat-alamat multicast IPv4 didefinisikan dalam ruang alamat kelas D, yakni 224.0.0.0/4, yang berkisar dari 224.0.0.0 hingga 224.255.255.255. Prefiks alamat 224.0.0.0/24 (dari alamat 224.0.0.0 hingga 224.0.0.255) tidak dapat digunakan karena dicadangkan untuk digunakan oleh lalu lintas multicast dalam subnet lokal.
Daftar alamat multicast yang ditetapkan oleh IANA dapat dilihat pada situs IANA.
Alamat Broadcast
Alamat broadcast untuk IP versi 4 digunakan untuk menyampaikan paket-paket data "satu-untuk-semua". Jika sebuah host pengirim yang hendak mengirimkan paket data dengan tujuan alamat broadcast, maka semua node yang terdapat di dalam segmen jaringan tersebut akan menerima paket tersebut dan memprosesnya. Berbeda dengan alamat IP unicast atau alamat IP multicast, alamat IP broadcast hanya dapat digunakan sebagai alamat tujuan saja, sehingga tidak dapat digunakan sebagai alamat sumber.
Ada empat buah jenis alamat IP broadcast, yakni network broadcast, subnet broadcast, all-subnets-directed broadcast, dan Limited Broadcast. Untuk setiap jenis alamat broadcast tersebut, paket IP broadcast akan dialamatkan kepada lapisan antarmuka jaringan dengan menggunakan alamat broadcast yang dimiliki oleh teknologi antarmuka jaringan yang digunakan. Sebagai contoh, untuk jaringan Ethernet dan Token Ring, semua paket broadcast IP akan dikirimkan ke alamat broadcast Ethernet dan Token Ring, yakni 0xFF-FF-FF-FF-FF-FF.
Network Broadcast
Alamat network broadcast IPv4 adalah alamat yang dibentuk dengan cara mengeset semua bit host menjadi 1 dalam sebuah alamat yang menggunakan kelas (classful). Contohnya adalah, dalam NetID 131.107.0.0/16, alamat broadcast-nya adalah 131.107.255.255. Alamat network broadcast digunakan untuk mengirimkan sebuah paket untuk semua host yang terdapat di dalam sebuah jaringan yang berbasis kelas. Router tidak dapat meneruskan paket-paket yang ditujukan dengan alamat network broadcast.
Subnet broadcast
Alamat subnet broadcast adalah alamat yang dibentuk dengan cara mengeset semua bit host menjadi 1 dalam sebuah alamat yang tidak menggunakan kelas (classless). Sebagai contoh, dalam NetID 131.107.26.0/24, alamat broadcast-nya adalah 131.107.26.255. Alamat subnet broadcast digunakan untuk mengirimkan paket ke semua host dalam sebuah jaringan yang telah dibagi dengan cara subnetting, atau supernetting. Router tidak dapat meneruskan paket-paket yang ditujukan dengan alamat subnet broadcast.
Alamat subnet broadcast tidak terdapat di dalam sebuah jaringan yang menggunakan kelas alamat IP, sementara itu, alamat network broadcast tidak terdapat di dalam sebuah jaringan yang tidak menggunakan kelas alamat IP.
All-subnets-directed broadcast
Alamat IP ini adalah alamat broadcast yang dibentuk dengan mengeset semua bit-bit network identifier yang asli yang berbasis kelas menjadi 1 untuk sebuah jaringan dengan alamat tak berkelas (classless). Sebuah paket jaringan yang dialamatkan ke alamat ini akan disampaikan ke semua host dalam semua subnet yang dibentuk dari network identifer yang berbasis kelas yang asli. Contoh untuk alamat ini adalah untuk sebuah network identifier 131.107.26.0/24, alamat all-subnets-directed broadcast untuknya adalah 131.107.255.255. Dengan kata lain, alamat ini adalah alamat jaringan broadcast dari network identifier alamat berbasis kelas yang asli. Dalam contoh di atas, alamat 131.107.26.0/24 yang merupakan alamat kelas B, yang secara default memiliki network identifer 16, maka alamatnya adalah 131.107.255.255.
Semua host dari sebuah jaringan dengan alamat tidak berkelas akan menengarkan dan memproses paket-paket yang dialamatkan ke alamat ini. RFC 922 mengharuskan router IP untuk meneruskan paket yang di-broadcast ke alamat ini ke semua subnet dalam jaringan berkelas yang asli. Meskipun demikian, hal ini belum banyak diimplementasikan.
Dengan banyaknya alamat network identifier yang tidak berkelas, maka alamat ini pun tidak relevan lagi dengan perkembangan jaringan. Menurut RFC 1812, penggunaan alamat jenis ini telah ditinggalkan.
Limited broadcast
Alamat ini adalah alamat yang dibentuk dengan mengeset semua 32 bit alamat IP versi 4 menjadi 1 (11111111111111111111111111111111 atau 255.255.255.255). Alamat ini digunakan ketika sebuah node IP harus melakukan penyampaian data secara one-to-everyone di dalam sebuah jaringan lokal tetapi ia belum mengetahui network identifier-nya. Contoh penggunaanya adalah ketika proses konfigurasi alamat secara otomatis dengan menggunakan Boot Protocol (BOOTP) atau Dynamic Host Configuration Protocol (DHCP). Sebagai contoh, dengan DHCP, sebuah klien DHCP harus menggunakan alamat ini untuk semua lalu lintas yang dikirimkan hingga server DHCP memberikan sewaan alamat IP kepadanya.
Semua host, yang berbasis kelas atau tanpa kelas akan mendengarkan dan memproses paket jaringan yang dialamatkan ke alamat ini. Meskipun kelihatannya dengan menggunakan alamat ini, paket jaringan akan dikirimkan ke semua node di dalam semua jaringan, ternyata hal ini hanya terjadi di dalam jaringan lokal saja, dan tidak akan pernah diteruskan oleh router IP, mengingat paket data dibatasi saja hanya dalam segmen jaringan lokal saja. Karenanya, alamat ini disebut sebagai limited broadcast.
Sumber : http://id.wikipedia.org/wiki/Alamat_IP_versi_4


Pengertian Sistem operasi
Sistem Informasi (SI) adalah kombinasi dari teknologi informasi dan aktivitas orang yang menggunakan teknologi itu untuk mendukung operasi dan manajemen. Dalam arti yang sangat luas, istilah sistem informasi yang sering digunakan merujuk kepada interaksi antara orang, proses algoritmik, data, dan teknologi. Dalam pengertian ini, istilah ini digunakan untuk merujuk tidak hanya pada penggunaan organisasi teknologi informasi dan komunikasi (TIK), tetapi juga untuk cara di mana orang berinteraksi dengan teknologi ini dalam mendukung proses bisnis.



 Ada yang membuat perbedaan yang jelas antara sistem informasi, dan komputer sistem TIK, dan proses bisnis. Sistem informasi yang berbeda dari teknologi informasi dalam sistem informasi biasanya terlihat seperti memiliki komponen TIK. Hal ini terutama berkaitan dengan tujuan pemanfaatan teknologi informasi. Sistem informasi juga berbeda dari proses bisnis. Sistem informasi membantu untuk mengontrol kinerja proses bisnis.
Alter berpendapat untuk sistem informasi sebagai tipe khusus dari sistem kerja. Sistem kerja adalah suatu sistem di mana manusia dan/atau mesin melakukan pekerjaan dengan menggunakan sumber daya untuk memproduksi produk tertentu dan/atau jasa bagi pelanggan. Sistem informasi adalah suatu sistem kerja yang kegiatannya ditujukan untuk pengolahan (menangkap, transmisi, menyimpan, mengambil, memanipulasi dan menampilkan) informasi.
Dengan demikian, sistem informasi antar-berhubungan dengan sistem data di satu sisi dan sistem aktivitas di sisi lain. Sistem informasi adalah suatu bentuk komunikasi sistem di mana data yang mewakili dan diproses sebagai bentuk dari memori sosial. Sistem informasi juga dapat dianggap sebagai bahasa semi formal yang mendukung manusia dalam pengambilan keputusan dan tindakan.
Sistem informasi merupakan fokus utama dari studi untuk disiplin sistem informasi dan organisasi informatika.
Sistem informasi adalah gabungan yang terorganisasi dari manusia, perangkat lunak, perangkat keras, jaringan komunikasi dan sumber data dalam mengumpulkan, mengubah, dan menyebarkan informasi dalam organisasi.
Sistem informasi adalah suatu sistem di dalam suatu organisasi yang mempertemukan kebutuhan pengolahan transaksi harian, mendukung operasi, bersifat manajerial dan kegiatan strategi dari suatu organisasi dan menyediakan pihak luar tertentu dengan laporan-laporan yang diperlukan.

Dalam banyak kasus, Sistem Operasi menyediakan suatu pustaka dari fungsi-fungsi standar, dimana aplikasi lain dapat memanggil fungsi-fungsi itu, sehingga dalam setiap pembuatan program baru, tidak perlu membuat fungsi-fungsi tersebut dari awal.
Sistem Operasi secara umum terdiri dari beberapa bagian:
Mekanisme Boot, yaitu meletakkan kernel ke dalam memory
Kernel, yaitu inti dari sebuah Sistem Operasi
Command Interpreter atau shell, yang bertugas membaca input dari pengguna
Pustaka-pustaka, yaitu yang menyediakan kumpulan fungsi dasar dan standar yang dapat dipanggil oleh aplikasi lain
Driver untuk berinteraksi dengan hardware eksternal, sekaligus untuk mengontrolnya.
Komponen
Ini terdiri dari komputer, instruksi, fakta yang tersimpan, manusia dan prosedur. SI dapat dikategorikan dalam empat bagian:
1. Sistem Informasi Manajemen
2. Sistem Pendukung Keputusan
3. Sistem Informasi Eksekutif
4. Sistem Pemrosesan Transaksi
Status Prosesor
Jenis status yang mungkin dapat disematkan pada suatu proses pada setiap sistem operasi dapat berbeda-beda. Tetapi paling tidak ada 3 macam status yang umum, yaitu:
1. Ready, yaitu status dimana proses siap untuk dieksekusi pada giliran berikutnya
2. Running, yaitu status dimana saat ini proses sedang dieksekusi oleh prosesor
3. Blocked, yaitu status dimana proses tidak dapat dijalankan pada saat prosesor siap/bebas

Tujuan Sistem Operasi
Sistem Operasi membuat komputer menjadi lebih mudah dan menarik serta nyaman untuk digunakan.
Sistem Operasi memungkinkan sumberdaya komputer digunakan secara efisien.
Sistem Operasi yang disusun/ diprogram sedemikian rupa memungkinkan menerima perubahan/ pengembangan baru yang efektif dan efisien, dapat melakukan pengujian sistem tanpa mengganggu layanan yang telah ada.
Sumber : http://id.wikipedia.org/wiki/Sistem_operasi

0 komentar:

Posting Komentar